Connect with us

Robot

How to Build a Combat Robot

Published

on

Combat Sports Robot - Cyberpunk Theme - AI Concept Image

Robot combat is an electrifying sport that sees engineers create their own robots and unleash them into the arena, where they battle for supremacy. Creating a combat robot requires innovation, practicality, and a basic understanding of mechanics and electronics. We’re going to show you how to create a winning robot!

Different Types of Combat Robots

Combat robots are classified by their primary method of attack. Here are the most common types of robots:

  • Spinner Robots: These robots feature powerful spinning weapons, such as horizontal or vertical spinners, designed to inflict significant damage upon impact.
  • Hammerbots: These robots employ hydraulic systems to deliver crushing blows to opponents, aiming to disable or immobilize them.
  • Wedge Robots: Wedge robots feature a low-profile design with a wedge-shaped front that allows them to easily deflect opponents and control the flow of the match.
  • Drum Spinners: Similar to spinner robots, drum spinners employ a drum-shaped weapon that rotates at high speeds, delivering formidable kinetic energy upon impact.
  • Lifter/Flipper Bots: These robots focus on flipping opponents over or lifting them into vulnerable positions, often using powerful lifting arms or pneumatic systems.

Combat Robot Design Considerations

Your combat robot is going to take a lot of damage in the arena, so you should focus on making your robot as durable as possible and choose sturdy materials and construction techniques capable of withstanding impacts, collisions, and weapon strikes.

To boost your robot’s durability, you may be tempted to make your robot as heavy as possible, but if you miscalculate weight distribution, your robot will struggle to move and be unstable. You need to balance the weight of components such as motors, batteries, and armor to optimize performance.

Combat robots, which are fast and agile, tend to perform very well in fights. Lightweight robots are able to outmaneuver opponents and evade incoming attacks. You can’t win a combat robot fight with just defense. The goal is to add weapons to your robot that fit your bot’s overall design yet still have the potential to inflict significant damage. 

Your robot requires effective control systems that allow your bot to maneuver effortlessly around the arena. You need to choose reliable control electronics that won’t break in the heat of battle and are easy to control, especially in high-pressure scenarios. 

Design Ideas and Weaponry

We recommend sticking to one of the tried and true styles of combat robots. Don’t overcomplicate the design: create a spinner, hammerbot, wedge robot, drum spinner, or flipper bot. Here are some tips when designing your combat robot:

  • Spinner Robots: You can play around with different spinner configurations, including horizontal bars, vertical discs, or asymmetrical designs for unique attack angles. Hardened steel or titanium are your best bet spinner weapon materials due to their durability and impact resistance.
  • Hammerbots: The design of the hammer mechanism, including the size and weight of the striking head, determines the impact force and effectiveness of the weapon. You can enhance the performance of hammerbots by optimizing the pneumatic or hydraulic system for rapid strikes and precise targeting.
  • Wedge Robots: Wedge robots excel at controlling the flow of the match thanks to their low-profile design and wedge-shaped front. You can improve standard wedge robots by using low-friction materials on the wedge surface, allowing smooth pushing and shoving maneuvers. Additionally, wedge robots can integrate lifting arms or flipping mechanisms to exploit opponents’ vulnerabilities.
  • Drum Spinners: You need to experiment with different drum configurations, including single-tooth, double-tooth, or serrated designs, to maximize impact potential and weapon reliability. High-tensile steel and hardened aluminum are commonly used for drum construction to withstand the stresses of combat.
  • Lifter/Flipper Bots: You can design lifting arms or flipping mechanisms capable of exerting sufficient force to topple opponents and disrupt their control. We recommend implementing pneumatic systems due to their rapid actuation and high lifting force.

Designing combat robots is a great way to get into the world of robotics. It’s also not nearly as difficult as you’d think. You can build a small, simple, yet effective battle robot within a few days for just a couple of hundred dollars. Remember to tune into BattleBots to get some ideas for your first robot, who knows, if you nail the design, your robot could be participating in the next event! 

Read More: How to Build a BattleBot

Sport Enthusiast, Builder of brands, and proud founder of Machina Sports, dedicated to pioneering the fusion of human athleticism with cutting-edge technology. Committed to creating a global platform and brand that celebrates the excitement and innovation inherent in Machina Sports while engaging a diverse community of enthusiasts and athletes worldwide.

Robot

Matches in the National Havoc Robot League Have Reached a New Level

Published

on

NHRL Banner

The 2024 National Havoc Robot League Season (NHRL) is powering along as 3lb, 12lb, and 30lb combat robots from across the globe battle to become NHRL’s 2024 World Champion. 

Robot combat is the most popular Machina Sport in the world and is also the most accessible. The sport is simple: two robots enter the cage, and only one leaves. The goal is to destroy the opposing robot and render it unable to continue to battle.

Robot combat has been around since the 90s with popular leagues like Battlebots and Robot Wars. The NHRL is continuing this tradition with seven yearly events held in the House of Havoc, located in Norwalk, CT. The NHRL is now the biggest robot combat league in the world, with shows selling out and hundreds of thousands of fans around the world tuning in to broadcasts.

Builders use cutting-edge technology and ground-breaking ideas to create new and unique robots that are capable of destroying an opposing robot within seconds. The NHRL offers fantastic cash prizes, and the world champions get to lift the coveted Golden Dumpster trophy.

So far, two NHRL events have taken place, and there are still five more to go. Let’s look back at what has transpired this season and see which robots are likely to become world champions!

The First NHRL Event of the Year

The 2024 NHRL season started with a bang on January 20, 2024, with a special event reserved solely for robots who had never competed in the NHRL before. 3lb, 12lb, and 30lb bots took part in the event, and the top four from each category received an invitation to the 2024 World Championships, which will feature a $50,000 prize pool.

There were some incredibly designed robots at the event, from flamethrowers to saws to classic flipping bots and even one very nasty robot armed with a nail gun. 

As there were many new robots competing, there were a healthy number of malfunctions. Some robots just stopped working, while others exploded. Bots were able to win matches by simply surviving.

The 12lb competition was by far the most competitive. Eight fiercely designed bots entered the cage and did their absolute best to destroy their opponents, but only one emerged victorious: Questionable Choices. 

This compact robot is built low to the ground and is armed with a buzz saw in the middle. Then, just below the buzz saw are two sharp spikes that Questionable Choices is fond of ramming into its opponents. The lighting-quick robot also can get underneath opposing bots and flip them high into the air.

In the final, Questionable Choices ended up destroying the drive of Blue Marlin, a similarly designed robot, and exerting superior control.

In the 3lb bracket, Scurryfest was by far the best robot and cruised to the finals, where it defeated Repeater. Then, in the 30lb bracket, Moccasin crushed Colossal Avian.

NHRL Brings the Heat With Its Second Event of the Season

The second NHRL event of the year took place in March, and again, 3lb, 12lb, and 30lb battle bots were competing for a place in the World Championships. The 3lb final between Red Panda and Eruption was a particularly fiery affair, with sparks literally flying.

Eruption came into the fight with a 51-26 record and didn’t disappoint. Channeling Mike Tyson, Eruption launched itself at Red Panda and, within the opening seconds of the fight, had Red Panda upside down and helpless. After continuing to violently ram Red Panda over and over again, Eruption secured the victory.

It only took a little over one minute for Pramheda to KO Black Jack and win the 12lb title. In the 30lb final, defending world champion Emulsifier managed to flip Vorion over. Then, while Vorion was in a vulnerable position, Emulsifier crept and drove its buzz raw right into the stranded robot. Smoke flew out of Vorion, and that was the end of the fight.

The next NHRL is on April 20 and there will be events running monthly up until October. This will be followed by the NHRL World Championship held in November, which is a can’t-miss event as the best battle bots throw down to see who is the best on the planet!

Continue Reading

Robot

Robots on the Court? AI Ball Machine Heats Up Tennis Training

Published

on

Tennis Bll on Blue Hard Court

Ball machines are nothing new in tennis and have been around since the 1970s. However, machines that can mimic players and are powered by AI are. Volley, an innovative sports tech company, has developed a cutting-edge training device that can be used for virtually all racquet sports, including tennis, padel, and pickleball.

Instead of just lobbing balls to you at different velocities, this new-age ball machine actively analyzes your gameplay and then unleashes balls. The goal of Volley’s training device is to recreate gameplay and give players the exact type of feeding they require to improve. 

Volley’s Ball Machine Is Tech Heavy

This AI-powered ball machine comes loaded with three cameras. One camera closely tracks the ball, while another camera tracks you, recording your every stroke. The goal is to get you hitting forehands like prime Roger Federer. The third camera is located within the ball machine and gives customer support a view of exactly what’s going on in case of issues.

Volley’s creation also comes with an LED screen where you can program different workouts. The ball machine is completely adjustable, so it’s capable of hitting booming first serves as well as gentle drop volleys, and everything in between. The training device stands at 87 inches and can tilt, twist, and rotate, ensuring the ball can be launched all over the court.

You can also download the Volley mobile app, where you’ll find workout plans and different statistics and even watch yourself hitting. Another cool feature is the remote control element. Directly from the app, you can instruct the ball machine exactly where you want to bounce, allowing you to work on specific elements of your game.

Volley hopes to ditch the remote control element and allow players to instruct the ball trainer via hand gestures. The team is constantly looking for new features they can add to the ball machine.

AI Ball Machine Sells Out in Less Than Four Months

It didn’t take long for Volley’s ball machine to grow an avid following within the tennis community. It was released in September 2023 and, within a couple of months, sold out. You can find Volley’s trainer at 45 different tennis clubs dotted around the US, including in NJ, FL, MA, OH, and PA. Volley costs a pretty penny and is currently being leased by tennis clubs for up to $3,000 per month.

Racquet sports technology companies are booming as they scramble to meet the needs of players who are no longer satisfied with a static ball machine. Slinger is another smart ball machine that can track your shots and offer stroke advice, while Proton comes loaded with sensors, resulting in laser-accurate ball delivery to all parts of the court.

Volley believes it can serve the needs of pros and hobbyists who are looking to recreate gameplay. With the help of AI, the company hopes to offer a next-generation solution similar to golf simulators.

Volley’s trainer is particularly effective for paddle, which traditional ball trainers have ignored. Volley’s ball machine can create common shots in paddles, which standard trainers can’t. Expect to see this new style of ball machine popping up at tennis clubs all over the world very soon.

Volley’s Ball Machine Can’t Hit the Ball Back

Despite being powered by AI and having the skills to recreate all of your favorite shots, Volley’s trainer can’t engage in rallies. There are currently no commercially available tennis-playing robots as the technology just isn’t there yet. However, a team at Georgia Tech has built a robot that can sustain rallies.

ESTHER features two wheels and an arm that holds a tennis racquet. The wheelchair-designed robot plays tennis at a very low level and is a fan of hitting high-looping shots. However, in a feat of engineering ingenuity, ESTHER can use its cameras to identify where the ball is going to land, move into position, and then strike it. More often than not, the ball lands in the court.

Tennis robots are advancing quickly. It’s reasonable to think that within 30 years, there’ll be a robot that can defeat the best pro tennis players. Also, local tennis coaches may be a thing of the past, with players opting to be trained by robots.

Continue Reading

Robot

H1 Robot Is Now Faster Than Boston Dynamics’ Atlas, Reaching 7.38 Mph

Published

on

Humanoid Robot Sprinter in a track

Unitree Robotics, based in Hangzhou, China, has smashed the robot speed record. Their humanoid robot, dubbed H1, is two miles per hour faster than Boston Dynamics’ Atlas robot and can reach impressive speeds of up to 3.3 meters per second. 

H1 won’t win any points for his running style, but the speed shuffle is effective, and he’s currently the fastest humanoid robot on the planet. The robot clocked in at just under 7.4 mph, which was achieved on a concrete pavement. The previous record was set by Atlas at 5.59 mph. H1 even broke the record while wearing pants! 

Meet China’s Answer to Atlas

Build-wise, H1 is comparable to a very slender human, standing at 71 inches tall and weighing just 100 pounds. The robot is loaded with 3D sensors and a depth camera, which gives him superhuman vision.

This Chinese robot has a completely hollow torso where you’ll find all of the electrical wiring, which acts as H1’s veins. While H1 does have arms, the humanoid robot is currently running around without hands. Unitree Robotics is trying to build hands that can rival Atlas’. The robot won’t be very effective if it can’t lift and put things down.

While Unitree’s H1 robot isn’t nearly as advanced as Boston Dynamics’ Atlas robot, the Chinese company is trying to compete on price. You can purchase H1 for as little as $90,000, while Atlast starts at $150,000 for the very basic version.

There’s a huge demand for humanoid robots as companies all over the world dream of employing them to take over every role imaginable, from mechanic to nurse to builder. However, we’re a long way away from automated workplaces staffed by H1s and Atlases.

What Can H1 Do?

H1 shows incredible balance. In a recent video, it was shown being kicked repeatedly from different angles, but the robot was consistently able to adjust its footing and never came close to falling over. The robot also could sense the tester near him and briefly paused before continuing to walk.

This Chinese robot has an odd gait with overly bent knees, but it’s proven effective. H1 can navigate stairs like a pro and even walk down backwards and while spinning. There are numerous people who would struggle with that feat!

After the engineers attached hand molds, the humanoid robot can now pick up certain objects and hold them securely. It’ll be interesting to see what the robot can do when it has fully functional hands.

H1 can jump as high as the average person and was even out jumping the tester. The Unitree Robotics creation even displayed impressive all-body coordination by dancing. Both arms and legs were moving at the same time and keeping up the beat. While the little jig won’t win any dancing competitions, it shows the robot is developing quickly.

In an even more incredible feat, the Unitree robot performed a standing backflip and stuck the landing. It didn’t leap very high in the air and stumbled a bit, but still, it remained standing.

Not Quite on Atlas’ Level Yet

Boston Dynamics’ Atlas is the gold standard when it comes to humanoid robots. Atlas can complete an obstacle course faster than most people and looks natural doing so. This American robot has a far more natural gait than H1 and a higher level of coordination.

Atlas can do backflips with a tuck, performing the challenging movement multiple times in a row and landing perfectly. Recently, the Boston Dynamics’ robot displayed its skills on a mock building site. Atlas was able to pick up a heavy tool bag and then clamber up multi-story scaffolding, and safely deliver the bag to the builder at the top. Then, in style did a flip off a box to celebrate his performance.

H1 may be the fastest humanoid robot on the planet, but it still can’t perform many basic tasks, especially without functional hands. The Atlas robot is far more nimble, as evidenced by its parkour tricks. It also demonstrated an ability to pick up and move heavy objects, tasks that could transform the manufacturing and building industry. Currently, neither of these humanoid robots can sprint, but it’s only a matter of time before they break the 100-meter record, too!

Read More: Cassie – The Fastest Bipedal Robot

Continue Reading

Trending